Neurophysiology Enlightenment
  • Neurophysiology Enlightenment
  • Education Center
  • Specific Neuro-Content
    • AI and Fat Loss Technology
    • Just Tell Me How Dammit! (Happiness)
    • Optimizing Brain Function with (N-R-T) Nutrient-Rich Foods: A Comprehensive Guide.
    • Boost BRAIN Productivity with the Promodoro Technique
    • From Stone tools to Elon Musk's Neuralink.
    • Concepts and Pitfalls
    • Keto Diet History Plus
    • Pain & Pleasure Blog
    • Brain of Savant vs. Average Mind
    • Rain Man vs The Average Brain Power
    • (Link Acknowledgements)
    • Fascicles
    • Connective Tissue
    • Fiber Types
    • Cell Body Locations
    • Muscle Structure
    • Mechanism of Contraction
    • Brachial Plexus
    • Brachial Plexus Module
    • Atoms & Ions & Neurodiagnostics
    • Electrical Components in Neurodiagnostics
    • Resting Potentials & Action Potentials"
    • Cell Membrane Physiology
    • All or None Response
    • Repolarization - Depolarization - Refractory Period
    • Hyperpolarization
    • Refractory Period
    • Propagation of Action Potential
    • Saltatory Conduction
    • Schwann Cells
    • Node of Ranvier
    • Sodium Potassium Pump
    • Myelinated Axons
    • Unmyelinated Axons
    • What is a Nerve Conduction Study?
    • Carpal Tunnel Syndrome
    • Lumbosacral Plexus
    • Ohm's Law
    • AC-DC Circuit Theory
    • Instrumentation
    • Equipment Parameters
    • Stimulation CC vs CV
    • Stimulator Parameters
    • Pre and Post Ganglionic Lesions
    • Waveform Evaluations
    • Normal Values
    • Pediatric Nerve Conduction
    • Wallerian Degeneration
    • F-Waves, H-Reflex, A,Waves
    • Blink Reflex
    • Neuromuscular Junction
    • Pre and Post Synaptic Disorders
    • Repetitive Stimulation
    • Upper Ext- Median Nerve
    • Ulnar Nerve +
    • Radial Nerve +
    • Musculocutaneous/Lateral Antebrachial
    • Lower Ext- Saphenous
    • Femoral Nerve
    • Lateral Femoral Cutaneous
    • Sciatic Nerve, Common Peroneal Nerve, Superficial Peroneal Nerve
    • Cranial Nerves I-XII
    • Facial Nerve
    • Trigeminal Nerve
    • Accessory Nerve
    • Phrenic Nerve
    • Suprascapular Nerve
    • Long Thoracic Nerve
    • Axillary Nerve
    • Multifocal Motor Neuropathy
    • Amyotrophic Lateral Sclerosis (ALS)
    • Poliomyelitis, Spinal Muscular Atrophy
    • Dorsal Root Ganglion Disorders/Sensory Neuronopathies
    • Radiculopathy
    • Polyradiculopathy
    • Root Avulsion
    • Erbs Palsy
    • Thoracic Outlet Syndrome
    • Parsonage Turmer / Brachial Neuropathy
    • Mononeuropathies
    • Median CTS
    • Ulnar UE
    • Ulnar Guyons Canal
    • Radial Nerve Palsy
    • Mononeuropathy Multiplex
    • Acquired AIDP, CIPD
    • Tibial - Tarsal Tunnel
    • Peroneal - Fibular Head
    • Polyneuropathies
    • Hereditary - CMT
    • Toxic, Metalbolic, Infectious
    • Muscle Disordrers
    • Skin Temperature/Age/Height
    • MGA - Martin Gruber Anastomosis
    • Riche Cannieu Anastomosis
    • Accessory Peroneal
    • EEG Voltage Fields
  • Stories of Interest Other Pathologies
  • Ask Anything... Immediate Answer
  • Shop Amazon! Everything Neuro...

Saltatory Conduction (Source Acknowledgement "KhanAcademy")

Additional Enlightenment Below
1. Link - Scholarpedia.org


Saltatory Conduction

Saltatory conduction (from the Latin saltare, to hop or leap) is the propagation of action potentials along myelinated axons from one node of Ranvier to the next node, increasing the conduction velocity of action potentials. The uninsulated nodes of Ranvier are the only places along the axon where ions are exchanged across the axon membrane, regenerating the action potential between regions of the axon that are insulated by myelin, unlike electrical conduction in a simple circuit.


Contents  [hide] 
  • 1Mechanism
  • 2Energy efficiency
  • 3Distribution
  • 4See also
  • 5References
  • 6External links


Mechanism[edit]Myelinated axons only allow action potentials to occur at the unmyelinated nodes of Ranvier that occur between the myelinated internodes. It is by this restriction that saltatory conduction propagates an action potential along the axon of a neuron at rates significantly higher than would be possible without the myelination of the axon (200 m/s compared to 2 m/s).[citation needed] As sodium rushes into the node it creates an electrical force which pushes on the ions already inside the axon. This rapid conduction of electrical signal reaches the next node and creates another action potential, thus refreshing the signal. In this manner, saltatory conduction allows electrical nerve signals to be propagated long distances at high rates without any degradation of the signal. Although the action potential appears to jump along the axon, this phenomenon is actually just the rapid, almost instantaneous, conduction of the signal inside the myelinated portion of the axon.
Energy efficiency[edit]In addition to increasing the speed of the nerve impulse, the myelin sheath helps in reducing energy expenditure over the axon membrane as a whole, because the amount of sodium and potassium ions that need to be pumped to bring the concentrations back to the resting state following each action potential is decreased.[1]
Distribution[edit]Saltatory conduction occurs widely in the myelinated nerve fibers of vertebrates, but was later discovered in a pair of medial myelinated giant fibers of Fenneropenaeus chinensis and Marsupenaeus japonicus shrimp,[2][3][4] as well as in a median giant fiber of an earthworm.[5] Saltatory conduction has also been found in the small- and medium-sized myelinated fibers of Penaeus shrimp.[6]
See also[edit]
  • Bioelectrochemistry
  • Cable theory
  • Electrophysiology
  • Ephaptic coupling
  • GHK current equation
  • Goldman equation
  • Hindmarsh–Rose model
  • Hodgkin–Huxley model
  • Neurotransmission
  • Patch clamp
  • Quantitative models of the action potential
References[edit]
  1. Jump up^ Tamarkin, Dawn. "Saltatory Conduction of APs". Retrieved 6 May2014.
  2. Jump up^ Hsu K, Tan TP, Chen FS. On the excitation and saltatory conduction in the giant fiber of shrimp (Penaeus orientalis). Proceedings of the 14th National Congress of the Chinese Association for Physiological Sciences. 1964, Aug. 7–15, Dalian, p. 17
  3. Jump up^ Hsu K, Tan TP, Chen FS. Saltatory conduction in the myelinated giant fiber of shrimp (Penaeus orientalis). KexueTongbao 20:380–382, 1975
  4. Jump up^ Kusano, Kiyoshi; Lavail, Matthew M. (August 1971). "Impulse conduction in the shrimp medullated giant fiber with special reference to the structure of functionally excitable areas". The Journal of Comparative Neurology. 142 (4): 481–494. PMID 5111883. doi:10.1002/cne.901420406.
  5. Jump up^ Günther, Jorge (15 August 1976). "Impulse conduction in the myelinated giant fibers of the earthworm. Structure and function of the dorsal nodes in the median giant fiber". Journal of Comparative Neurology. 168 (4): 505–531. PMID 939820. doi:10.1002/cne.901680405.
  6. Jump up^ Xu, K; Terakawa, S (1993). "Saltatory conduction and a novel type of excitable fenestra in shrimp myelinated nerve fibers.". The Japanese journal of physiology. 43 Suppl 1: S285–93. PMID 8271510.
  • "Saltatory Conduction." Biology Online. N.p., 3 Oct. 2005. Web. 15 Dec. 2014. <http%3A%2F%2Fwww.biology-online.org%2Fdictionary%2FSaltatory_conduction>.
  • SaladinKenneth, S. Anatomy & Physiology: The Unity of Form and Function. N.p.: McGraw-Hill, 2011. Print.

Edit links
  • This page was last edited on 10 April 2017, at 12:58.
  • Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Click for Full Privacy Policy & Disclaimer
Affiliate Disclosure: Some of the links on this website are affiliate links, which means we may earn a commission if you click through and make a purchase or sign up. We are a participant in affiliate programs with Amazon, edX, Alison Education, and others. As an Amazon Associate, we earn from qualifying purchases. This helps support our site at no extra cost to you. Thank you for your support!​